PRO-CAP *Electronics* | MULTILAYER (| CERAMIC CHIP CAPACITORS | | |--------------------|-------------------------|-----------| | SIZE | 6.3V ~50V |] / // // | | (L) Lenght mm | 3.2 ± 0.3 |] -{//// | | (W) Width mm | 2.5 ± 0.3 | T (max) | | (T) Thickness mm | 2.70 max (X5R =2.8 max) | | | (P) Termination mm | 0.6 ± 0.3 | | | | (P) Termination | | 0.6 ± 0.3 | | | | | | | → P ← → P ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← | | | | | | | | | |--|-----------------|-----|--|--|--|------|-------|----------|-------|---|--------|-----|----------|---------|-------|----------|---------|--| | AP 10 | VOLTAG | E | | | | | | 10 | | | | | 16 | | | | | | | AP 10 | | | COG | X5R | | Z5U_ | Y5V | COG | X5R | | Z5U_ | Y5V | COG | X5R | | Z5U_ | Y5V | 180 190 | (pF) 12 | | | | | | | | | | | | | | | | | | | 22 250 | 13 | 33 330 3 | 30 | | | | | | | | | | | | | | | | | | | | 471 470 470 470 470 470 470 470 470 470 470 | 68 | Section | 1500 | 150 | 180 | 220 | 330 331 | 300 391 | #70 | | | ļ | | | | | | | | | | | | | | | | | 560 661 | | | <u> </u> | <u> </u> | | | | | | | | | | | | — | | | | 680 681 | | | | | | | | | | | | | | | | | | | | 880 821 100 100 100 100 1 100 100 1 10 | | | | | | | | | | | | | | | | | | | | 1000 102 123 125 | 1500 152 | 1000 | 102 | | | | | | | | | | | | | | | | | | 1800 182 | 2220 222 | | | | | | | | | | | | | | | | | igwdown | | | 2700 272 | 3300 332 | 3300 392 | Second Set 2 | 6800 682 | 8200 822 | | | ļ | | | | | | | | | | | | | | | | | (pf) 0.010 103 | 0.015 153 | | | - | | | | | | | | | | | | | | | | | 0.018 | 0.027 | 0.033 | 0.039 393 | 0.047 | 0.056 563 0.082 683 0.1 104 0.12 124 0.15 154 0.18 184 0.22 224 0.27 274 0.33 334 0.39 394 0.47 474 0.56 564 0.68 684 0.62 824 1.0 105 1.1 125 1.2 125 1.3 185 2.2 225 3.3 335 4.7 475 6.8 865 10 106 10 106 22 226 33 336 47 476 | 0.082 | 0.1 | 0.12 | 0.15 | 0.18 | | | | <u> </u> | | | | | | | | | | | | | | | | 0.22 | | | | | | | | | | | | | | | | | | | | 0.27 | 0.39 394 | 0.47 | 0.56 564 0.68 684 0.82 684 0.82 684 0.82 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | 0.68 684 0.82 824 1.0 105 1.2 125 1.5 155 1.8 185 2.2 225 3.3 335 4.7 475 6.8 685 10 106 22 226 33 336 47 476 100 107 | | | | <u> </u> | | | | | | | | | | | | | | | | 0.82 824 | 1.0 | | | | | | | | | | | | | | | | | | | | 1.2 125 | 1.8 | 1.2 | 125 | | | | | | | | | | | | | | | | | | 2.2 225 3.3 335 336 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3.3 335 4.7 475 6.8 685 685 685 685 685 685 685 685 685 68 | 4.7 475 6.8 685 685 685 685 685 685 685 685 685 68 | 6.8 685 | 10 106 22 226 33 33 6 336 3 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 22 226 33 336 47 476 100 107 | 47 476 100 107 100 107 100 100 100 100 100 100 | 22 | 226 | | | | | | | | | | | | | | | | | | 100 107 | 100 | 107 | | | | | Force | Iditions | Loope | oitonoo | voluce | and | orkina : | (altaga | 0 000 | 00.005 | tootc | | ## PRO-CAP *Electronics* ## MULTILAYER CERAMIC CHIP CAPACITORS | VOLTAG | F | 25 | | | | | | | 35 | | | 50 | | | | | | |---------------------|------------|------|--------|------|-----|------|------|----------|-------|----------|------|------|---------------------|----------|--|-----|--| | Capacitance | | COG | X5R | X7R | Z5U | Y5V | COG | X5R | X7R | Z5U | Y5V | COG | X5R | X7R | Z5U | Y5V | | | CAP 10 | 100 | _000 | - X3IC | ATIV | | - 13 | _000 | - X3IC | - 7/1 | | - 13 | -000 | _ // 31\ | AIN | | 130 | | | (pF) 12 | 120 | | | | | | | | | | | | | | | | | | 15 | 150 | | | | | | | | | | | | | | | | | | 18
22 | 180
220 | | | | | | | | | | | | | | | | | | 27 | 270 | | | | | | | | | | | | | | | | | | 33 | 330 | | | | | | | | | | | | | | | | | | 36 | 360 | | | | | | | | | | | | | | | | | | 39
47 | 390
470 | | | | | | | | | | | | | | - | | | | 56 | 560 | | | | | | | | | | | | | | | | | | 68 | 680 | | | | | | | | | | | | | | | | | | 82 | 820 | | | | | | | | | | | | | | | | | | 100
150 | 101
151 | | | | | | | | | | | | | | | | | | 180 | 181 | | | | | | | | | | | | | | | | | | 220 | 221 | | | | | | | | | | | | | | | | | | 270 | 271 | | | | | | | | | | | | | | | | | | 330
390 | 331
391 | | | - | | | | | | | | | | | | | | | 470 | 471 | | | | | | | | | | | | | | | | | | 560 | 561 | | | | | | | | | | | | | | | | | | 680 | 681 | | | | | | | | | | | | | | igsquare | | | | 820
1000 | 821
102 | | | | | | | | | | | | | | | | | | 1200 | 122 | | | | | | | | | | | | | | | | | | 1500 | 152 | | | | | | | | | | | | | | | | | | 1800 | 182 | | | | | | | | | | | | | | | | | | 2200
2700 | 222
272 | | | | | | | | | | | | | | | | | | 3300 | 332 | | | | | | | | | | | | | | | | | | 3900 | 392 | | | | | | | | | | | | | | | | | | 4700 | 472 | | | | | | | | | | | | | | | | | | 5600
6800 | 562
682 | | | | | | | | | | | | | | | | | | 8200 | 822 | | | | | | | | | | | | | | | | | | (μ F) 0.010 | 103 | | | | | | | | | | | | | | | | | | 0.015
0.018 | 153
183 | | | | | | | | | | | | | | | | | | 0.018 | 223 | | | | | | | | | | | | | | | | | | 0.027 | 273 | | | | | | | | | | | | | | | | | | 0.033 | 333 | | | | | | | | | | | | | | | | | | 0.039
0.047 | 393
473 | | | | | | | | | | | | | | | | | | 0.056 | 563 | | | | | | | | | | | | | | | | | | 0.068 | 683 | | | | | | | | | | | | | | | | | | 0.082 | 823 | | | | | | | | | | | | | | | | | | 0.10
0.12 | 104
124 | | | | | | | | | | | | | | | | | | 0.12 | 154 | | | | | | | | | | | | | | | | | | 0.18 | 184 | | | | | | | | | | | | | | | | | | 0.22 | 224 | | | | | | | | | | | | | | | | | | 0.27
0.33 | 274
334 | | | | | | | | | | | | | | | | | | 0.39 | 394 | | | | | | | | | | | | | | | | | | 0.47 | 474 | | | | | | | | | | | | | | | | | | 0.56 | 564 | | | | | | | | | | | | | | | | | | 0.68
0.82 | 684
824 | | | | | | | | | | | | | | | | | | 1.0 | 105 | | | | | | | | | | | | | | | | | | 1.2 | 125 | | | | | | | | | | | | | | | | | | 1.5 | 155 | | | | | | | | | | | | | | | | | | 1.8
2.0 | 185
205 | | | | | | | | | | | | | | \vdash | | | | 2.2 | 225 | | | | | | | | | | | | | | | | | | 3.3 | 335 | | | | | | | | | | | | | | | | | | 4.7 | 475 | | | | | | | | | | | | | | | | | | 5.6
6.8 | 565
685 | | | | | | | | | | | | | | | | | | 10 | 106 | | | | | | | | | | | | | | | | | | 22 | 226 | | | | | | | | | | | | | | | | | | 33 | 336 | | | | | | | | | | | | | | | | | | 47 | 476 | | | | | | | <u> </u> | | <u> </u> | | | | <u> </u> | | | |